

Specification for FoxTalk™

TCP/IP Protocol

 Version 1.1

Computer Projects of Illinois, Inc.

6416 South Cass Avenue

Westmont, IL 60559

(630) 968-0244

FoxTalk™ Protocol Specification

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * *

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. i

Table of Contents

1 Overview .. 1

1.1 Connection Oriented ... 1

1.2 Message Framing .. 1

1.3 Content Negotiation .. 2

1.4 Application Acknowledgement .. 2

1.5 Connection Maintenance .. 3

1.6 Frame Exchange Methodology .. 3

2 Protocol Flow ... 5

2.1 TCP Connect ... 5

2.2 Connect Message ... 5

2.3 Encryption Negotiation .. 6

2.4 Client Identification .. 6

2.5 Regular Messaging .. 6

2.6 Idle Line Maintenance .. 7

2.7 Connection Closure ... 7

3 Message Framing .. 9

4 FoxTalk™ Header .. 11

4.1 Exchange ID .. 11

4.2 Frame Type.. 12

4.2.1 Type C .. 12

4.2.2 Type K .. 12

4.2.3 Type I ... 13

4.2.4 Type E .. 13

4.2.5 Type M ... 13

4.2.6 Type A .. 13

4.2.7 Type N .. 14

4.2.8 Type H .. 14

4.3 End-Of-Exchange Indicator ... 14

5 Connect Message Details .. 15

5.1 Major Version Number .. 16

5.2 Minor Version Number .. 16

5.3 Maximum Frame Length ... 16

5.4 Maximum Idle Length .. 16

5.5 Default Timeout .. 17

5.6 Use Encryption .. 17

5.7 Object Coding Technique... 17

5.8 Newline Sequence .. 18

FoxTalk™ Protocol Specification

Pg. ii Company Confidential Ver. 1.0

6 Encryption ... 19

6.1 Cryptographic Components ... 19

6.1.1 Random Number Generation .. 20

6.1.2 RSA Encryption .. 20

6.1.3 PKCS7 Padding ... 20

6.1.4 SHA-1 Hash ... 21

6.1.5 AES Operation .. 22

6.2 Key Negotiation ... 22

6.2.1 K1 Message .. 23

6.2.2 K2 Message .. 23

6.2.3 K3 Message .. 24

6.3 Type E Frame .. 25

6.3.1 Maximum Plain Text Lenth ... 26

6.3.2 Type E Payload ... 26

Appendix A – FoxTalk™ Examples .. 29

Example 1: Connect message exchange .. 29

Example 2: Heartbeat exchange .. 32

Example 3: Non-encrypted single frame data message ... 33

Example 4: Negative acknowledgement.. 34

Example 5: Key Negotiation .. 35

Example 6: Encrypted Message ... 36

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 1.

1 Overview

The FoxTalk™ Protocol was developed by CPI to interface our various client software

products with our OpenFox™ Message Switch in a consistent manner. CPI considers the

protocol open to implementation by anyone, and will freely release the specification.

There are no royalty or license charges for use of the FoxTalk™ Protocol.

The FoxTalk™ Protocol represents an application-to-application protocol for use over a

TCP/IP communications session. The protocol introduces a method for the client and

server to negotiate session parameters at startup and specifies a formatting standard for

delineating data within the TCP/IP data stream.

TCP/IP provides a connection-oriented data stream for applications to communicate. The

low level drivers will guarantee that data will arrive at the destination end of an

established session in the order it was sent by the originating side. It will also guarantee

that data is successfully delivered before it is removed from the originators outbound

buffer. The application level must solve all remaining communications issues. Below is

an overview of each communications challenge and how it is addressed within the

FoxTalk™ Protocol.

1.1 Connection Oriented

The FoxTalk™ Protocol specifies that an open TCP session is maintained at all

times to allow the smallest possible delay in communications. The law

enforcement environment involves unsolicited messages flowing at any time in

either direction, from the client to the switch or vice versa. Frequently these

messages contain time sensitive information such as hit requests or dangerous

weather notifications. Maintaining an open communications link insures that

these message may flow immediately, inbound or outbound.

1.2 Message Framing

Since TCP/IP provides a stream format for data exchange, the applications must

use a consistent method to delineate the beginning and ending of a message

within the data stream. The FoxTalk™ Protocol uses a framing technique that is

very similar to the NCIC-2000 framing method. The protocol specifies a start and

stop pattern identical to NCIC-2000 framing, and a frame length which is

extended to 32-bits from the NCIC-2000 standard of 16-bits. The hybrid frame

allows more flexibility for large frames while maintaining a familiarity to anyone

with experience in the law enforcement market.

FoxTalk™ Protocol Specification

Pg. 2 Company Confidential Ver. 1.0

1.3 Content Negotiation

In modern law enforcement messaging environments the message switch is

frequently at the center of a network of dissimilar communicating applications.

Often times the end applications are developed by many different vendors or are

going through upgrades where a common vendor may have multiple versions of

an application in the field at once. These different clients will typically have

different capabilities. FoxTalk™ will allow clients of different capabilities to

communicate successfully without relying on OpenFox™ system administrators

to make configuration changes to each device. The session parameters will be

negotiable by the client after connecting. The features that may be negotiated

include:

 Maximum frame length allowed
 Use encrypted data or plain text
 Allow binary object transmissions (such as images) or not, and if so

specify encoding technique
 Specify new-line sequence for text blocks
 Specify maximum allowed idle time and default timeout

This negotiation technique allows image capable and non-image capable devices

to specify their preference on session establishment. If a non image capable

device is later upgraded to be image capable the new software version simply

negotiates image capability with OpenFox™, thus obviating the need for an

administrator to change the device configuration tables. The maximum frame

length will allow multiple clients to negotiate different block sizes without relying

on individually configuring each device differently. The ability to request

unencrypted data will be useful in a site where the network routers perform

encryption. In such a case the software encryption only adds overhead and may

be safely disabled. Making this parameter negotiable allows client developers to

add flexibility to their product’s configuration. Finally, the ability of the client to

specify his preferred new-line sequence removes ambiguity from parsing

messages specifically for new-lines and guarantees an acceptable presentation

format on the client’s system.

1.4 Application Acknowledgement

Since an application program could fail after the confirmed arrival of data at the

TCP layer but before the application has read the data out of the TCP receive

buffer the possibility of data loss exists unless applications send

acknowledgements to each after successfully receiving data. FoxTalk™ specifies

a simple application acknowledgement to secure the communications link from

data loss.

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 3.

1.5 Connection Maintenance

Because FoxTalk™ specifies that an open TCP session exist at all times when an

application is ready and able to exchange data, a simple heartbeat mechanism is

used to catch link or application failures in a timely fashion. The danger in not

using heartbeats lies in the client’s ability to detect that it is no longer connected

to the switch. For example, many workstations function primarily as receivers

(such as unattended printers) and don’t have a large volume of transactions

initiated to the switch. Since these devices rarely send any data they can’t rely on

send failures to detect a failed link. In these cases, if a half session failure occurs

it will be unlikely that anyone will notice; meanwhile the workstation may not be

receiving messages that are queued on the message switch. While it may seem

that half-session failures are unlikely, they are actually common especially in a

modern network that deploys firewall devices for security. All firewalls have an

idle session timeout, which when activated does not close the connection to the

peers but merely removes it from the firewalls internal tables. Two

communicating applications across a firewall that idles them out will experience

half-session failure. Heartbeats alleviate this concern by both keeping sessions

from idling out and by allowing an unattended application to recognize a failed

session and automatically re-establish connectivity it a timely fashion.

1.6 Frame Exchange Methodology

The FoxTalk™ protocol functions by building frames of information and

exchanging them. This is what guarantees that every message sent receives some

sort of acknowledgement from the other side – every meaningful task is an

exchange of frames. For example, session parameters are negotiated after startup

by exchanging Connect Message frames. An idle session is maintained through a

Heartbeat exchange. A data message is delivered through the exchange of one or

more data message frames and a corresponding ACK or NAK frame.

FoxTalk™ Protocol Specification

Pg. 4 Company Confidential Ver. 1.0

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * *

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 5.

2 Protocol Flow

The FoxTalk™ protocol requires that a device establish a TCP/IP session with the

OpenFox™ message switch and negotiate session parameters to create an open session.

Once the session is open, messages can be initiated at any time in either direction. Every

message must get a response from the recipient before the next message is sent. If the

maximum idle time is reached the client must send a heartbeat. The OpenFox™ will

respond by echoing the heartbeat back to the client. Below is a description of each of the

required steps in detail.

2.1 TCP Connect

The client should establish a TCP connection with the OpenFox™ IP address and

published port number. These values are unique to each account and must be

determined by each account’s system administrators. If a TCP connect fails the

client should wait a minimum of 30 seconds before attempting another

connection request. Failure to delay between connection requests can cause a

condition resembling a denial of service attack to exist on the message switch

network and must be avoided. After a successful connection has been established

the client should send a FoxTalk™ connect message as the first step in

negotiating session parameters.

2.2 Connect Message

After accepting a TCP connection from a client the OpenFox™ message switch

will require that the next message received be a FoxTalk™ connect message. The

client should choose from the available session parameter choices, construct a

connect message, and send the message to OpenFox™. OpenFox™ will adjust

the values in the connect message to values that OpenFox™ can support and that

are required by the context in which OpenFox™ and the client are

communicating. OpenFox™ will then return the connect message with the

altered parameters. The client must be able to process the parameters as they are

returned from OpenFox™. If the client is unable or unwilling to do so it should

disconnect from OpenFox™ and notify the user that it is unable to accept the

parameters required by OpenFox™. If the client is able to accept the parameters

then a successful communications session has been established. Please see the

detailed documentation of the connect message options in section 5 – Connect

Message Details. If encryption is negotiated, then the next step is key

negotiation, otherwise the session goes immediately to the identification phase.

FoxTalk™ Protocol Specification

Pg. 6 Company Confidential Ver. 1.0

2.3 Encryption Negotiation

If encryption is negotiated during the connect message exchange then a session

key must be negotiated next. The data traffic of an encrypted FoxTalk™ session

is protected through the use of the AES encryption algorithm. This algorithm is

symmetric in nature and requires a key value that is known to both the server and

the client. During this phase, the server requests a key value from the client

providing a value known as a server nonce to be sure that the response is related

to this specific request. The client returns the server nonce, along with a client

nonce and a randomly chosen AES key value. This entire message is encrypted

using the RSA algorithm with the public key of the FoxTalk™ server (ensuring

that only the FoxTalk™ server will be able to decrypt the message). After the

FoxTalk™ server determines the server nonce has been correctly return, it will

apply the AES key to the session and return the client nonce encrypted with the

AES session key. This allows the client to confirm that the appropriate key has

been applied to the session by the server.

2.4 Client Identification

After successfully negotiating encryption if required, otherwise immediately

following the connect message exchange, the client must be identified by the

FoxTalk™ server. In the case of remote systems (CADs, Mobile Controllers,

Regional Message Switch, etc.) this step is performed automatically by the

FoxTalk™ server based on the originating IP address of the client session. In the

case of OpenFox™ Desktop workstations, the Desktop software must send a

proper OpenFox™ License file (obtained by the Desktop client during software

registration on the Desktop Launch Website). In the case of Desktop clients, the

server will Nak the License file if it is invalid or incorrect, or send a textual

response containing information about the session if the License File was

accepted.

2.5 Regular Messaging

Immediately after the identification has finished messages may flow in either

direction. A message originator must receive an acknowledgement from the other

side before sending another outbound message. For example, if the client has 4

messages to send to OpenFox™, it must send one and then wait for OpenFox™ to

respond with a FoxTalk™ acknowledgement. Then it may send the second

message (and so on). In the event that a message’s length would cause a single

FoxTalk™ frame to exceed the negotiated maximum frame length it must be

broken into multiple frames. There is no acknowledgement between frames. A

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 7.

series of frames are simply built with all but the last having an End-Of-Exchange

code of ‘N’ in the header. The last frame should have an End-Of-Exchange code

of ‘Y’. The Exchange ID field should be identical for each frame of the message.

There is no need to worry about the frames arriving out of order at the other end

since the low level TCP drivers will insure that that doesn’t happen. After

receiving the final frame of a multi-frame message the recipient will send a

FoxTalk™ acknowledgement. If no acknowledgement is received by the sender,

then the entire message must be retransmitted. Please note that a message

originator may choose to send a message as multiple frames even if the individual

frame lengths don’t reach the maximum negotiate frame length. In other words,

the message originator may choose to break a message into frames of any length

up to the maximum negotiated frame length. The breaks may occur at any place

in a message.

2.6 Idle Line Maintenance

In the event that a session exceeds the negotiated maximum idle time it must send

a FoxTalk™ Heartbeat to OpenFox™. OpenFox™ will immediately echo the

heartbeat back (so that the peer can verify that the connection is still alive). If an

application sends a heartbeat to OpenFox™ but does not receive a heartbeat back

within the negotiated default timeout it should consider the link dead and close

the connection.

2.7 Connection Closure

An active FoxTalk™ session may be closed by either side at any time. An

application using FoxTalk™ must be able to handle a connection being closed.

The proper action upon receiving a close is wait at least 30 seconds and then

attempt to re-connect. If the re-connect attempt fails, wait another 30 seconds and

retry (and so on) until the connection is successful.

FoxTalk™ Protocol Specification

Pg. 8 Company Confidential Ver. 1.0

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * *

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 9.

3 Message Framing

As covered in the overview, the FoxTalk™ Protocol makes use of a basic message frame

that is very similar to the NCIC-2000 framing technique. The exception is that

FoxTalk™ specifies a 32-bit frame length field (as opposed to the 16-bit NCIC-2000

standard). Within the FoxTalk™ frame is a header and payload section (message

content). Below is a table depicting the FoxTalk™ frame.

Element Description

Frame Start Pattern 32-bit unsigned integer in network byte order having the

hexadecimal value FF00AA55

Frame Length 32-bit unsigned integer in network byte order that contains
the overall length of the frame, including the start pattern,
frame length field, protocol header, frame payload and
stop pattern. This value must be at least as large as the
framing overhead and must be no larger than the
maximum negotiated frame length.

Frame Header FoxTalk™ Header – fixed 4 byte length, documented
below

Frame Payload Variable length frame content. In the case of protocol
frames this field is normally zero-length. In the case of
message transmission this field holds the message
content.

Frame Stop Pattern 32-bit unsigned integer in network byte order having the

hexadecimal value 55AA00FF

The framing structure allows the recipient to find a clearly delineated frame within the

TCP/IP data stream. The FoxTalk™ framing technique adds a fixed overhead of 12 bytes

to every transmission. After receiving a frame an application will parse the header to

determine the meaning and content of the frame.

FoxTalk™ Protocol Specification

Pg. 10 Company Confidential Ver. 1.0

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * *

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 11.

4 FoxTalk™ Header

As documented above, the framing technique delineates a FoxTalk™ Frame. Within the

frame is the frame header which conveys FoxTalk™ protocol information (in a

FoxTalk™ Header). Below is a table representing the FoxTalk™ header.

Element Field Presence Description

Exchange ID Always Present 16-bit unsigned integer in
network byte order. This
value is created by the
originator and echoed by
the receiver in the
resultant ACK, NAK,
Connect or Heartbeat
response.

Frame Type Always Present Single ASCII byte having
the value A, N, M, H or C.

End-Of-Exchange
Indicator

Always Present Single ASCII byte having
the value Y or N.

The length of the FoxTalk™ header is fixed at 4 bytes. In the next sections the individual

elements are documented one at a time. The terms FoxTalk™ Header and Frame Header

are synonymous.

4.1 Exchange ID

Every exchange in FoxTalk™ must receive a response from the recipient. The

Exchange ID field is meant as a method to double check that the response

received is actually for the last item sent. The originator of a FoxTalk™ frame

should select a unique value for the Exchange ID field. He may use a pseudo-

random algorithm or an incrementing integer value. There is no requirement that

the value has any relation to a previously used ID other than that it should be

different from the last one used. The value must be a 16-bit unsigned integer in

network byte order. In the case of multi-frame data messages, each frame of a

single data message must use the same Exchange ID value (as the frames together

comprise a single FoxTalk™ exchange).

When a receiving application sends an acknowledgement it should set the

Exchange ID field of it’s response to the Exchange ID value of the frame (or

frames) it has just received. Please note that the Exchange ID value applies only

at the protocol level and does not relate to logical message responses. In other

words, suppose a client were to generate a QV transaction to NCIC. It would

construct a FoxTalk™ frame to hold the inquiry message and choose an Exchange

FoxTalk™ Protocol Specification

Pg. 12 Company Confidential Ver. 1.0

ID field. For the purpose of example, let’s say it chose hex 0A17. After

receiving this message, the OpenFox™ switch would respond with a FoxTalk™

Acknowledgement frame containing an Exchange ID of hex 0A17. The

OpenFox™ would then switch the inquiry to NCIC. After receiving an NCIC

response, OpenFox™ would build a FoxTalk™ frame to hold the NCIC response

and choose an Exchange ID field. For the purpose of example, let’s say it chose

hex 7453. OpenFox™ would send the data message frame to the client and the

client would respond with a FoxTalk™ ACK message with the Exchange ID set

to hex 7453. This example demonstrates how the Exchange ID field is related to

protocol exchanges rather than transaction exchanges.

4.2 Frame Type

The Frame Type field is a single ASCII byte having one of the following values:

Frame Type Description

C Connection message – used to negotiate session
parameters.

K Key message – used to negotiate a session encryption
key.

I Identity message – used to exchange client identification
information

E Encrypted data message.

M Data message (not encrypted).

A Positive acknowledgement.

N Negative acknowledgement.

H Heartbeat

4.2.1 Type C

The Connect Frame Type indicates that a connection message will occupy

the frame payload. Please see section 5 – Connect Message Details.

Type C frame headers will always be single-frame messages (i.e. the End-

Of-Exchange field must be set to ‘Y’).

4.2.2 Type K

The Key Frame Type indicates that the payload contains key negotiation

data. The Type K messages are only used on sessions where encryption

has been negotiated during the connect message exchange. There are a

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 13.

total of 3 K frames exchanged to complete key negotiation. For further

details please see section 6 – Encryption.

4.2.3 Type I

The Identity Frame Type indicated that the payload contains information

used to determine the identity of a client session. This type is only used

for OpenFox™ Desktop client sessions. Type I messages are always

single frames.

4.2.4 Type E

The Encrypted Data Frame Type is used to transmit application data

messages that have been protected with encryption. All data messages on

an encrypted FoxTalk™ session must use Type E frames (the server will

Nak any Type M frames received, and will never send Type M frames on

encrypted sessions). The payload of Type E message follows a specific

format that is documented in section 6 – Encryption. The End-Of-

Exchange indicator in the FoxTalk™ header will determine whether this

frame is the end of message or not.

4.2.5 Type M

The Data Frame Type indicates that the frame payload will contain all or

part of a data message. The End-Of-Exchange indicator in the FoxTalk™

header will determine whether this frame is the end of message or not.

4.2.6 Type A

The acknowledgement Type is used to tell the other side of the connection

that the last data message was safely received. The Exchange ID field in

the FoxTalk™ header must match the Exchange ID of the last received

data message (the data message which is being acknowledged). The Type

A frame is always a single frame (the End-Of-Exchange field must be ‘Y’)

and must never contain any frame payload data.

FoxTalk™ Protocol Specification

Pg. 14 Company Confidential Ver. 1.0

4.2.7 Type N

The negative acknowledgement may be used to inform the other side of a

connection that the last received data message contained errors, or was

otherwise not processed successfully. FoxTalk™ leaves the decision of

how to handle NAKs up to the implementer. Reasonable actions include

spilling the message to an error console, or retrying up to a reasonable

retry limit. If the OpenFox™ encounters protocol errors with a received

data message it will generate a NAK if possible. The Frame Payload of a

Type N frame should contain a printable ASCII text error message

describing the error condition encountered. Type N frames must be single

frame (End-Of-Exhange must be ‘Y’).

4.2.8 Type H

The FoxTalk™ Heartbeat is sent by the client when a session has reached

the maximum negotiated idle time. The Type H frame is always a single

frame with no payload data. The OpenFox™ will immediately return a

Heartbeat to the client (with the same Exchange ID as received from the

client) so that the client may verify the status of the connection as well. If

the OpenFox™ does not receive a heartbeat in twice the maximum idle

time (i.e. it misses two consecutive heartbeats from the client) the link will

be considered dead and the connection will be closed. Likewise, if the

client does not receive a response to a heartbeat from OpenFox™ within

the negotiated Default Timeout it should consider the link dead and go

through a close-and-retry cycle.

4.3 End-Of-Exchange Indicator

The End-Of-Exchange Indicator is a single ASCII byte, having value ‘Y’ or ‘N’,

used on Type M (data message) and Type E (encrypted data message) frames to

indicate whether this frame is the end of the current data message. All other

Frame Types must always have End-Of-Exchange set to ‘Y’. The recipient of a

data message should not send an acknowledgement to any data message frame

until the End-Of-Exchange ‘Y’ frame (termed the end of message frame) is

received. If an acknowledgement to a data message is not received within the

negotiated Default Timeout the message sender should resend the entire message

(including all End-Of-Exchange ‘N’ - non end of message - frames).

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 15.

5 Connect Message Details

This section of the document will provide the details of the Connect message. As

documented above, after establishing a TCP session with OpenFox™ a client must send a

Connect Message. The Connect Message will contain the clients preferred session

attributes. The OpenFox™ will modify any of the parameters that it needs to and return

the Connect Message with the final parameters. The client must understand and be able

to comply with all the parameters in the returned Connect Message. If the client is

unable to comply with the parameters returned by OpenFox™ it must then disconnect

and notify the user.

Below is a table depicting the Connect Message:

Element Description

Major Version Number 16-bit unsigned integer in network byte
order containing the major version
number of the FoxTalk™ protocol in
use.

Minor Version Number 16-bit unsigned integer in network byte
order containing the minor version
number of the FoxTalk™ protocol in
use.

Maximum Frame Length 32-bit unsigned integer in network byte
order containing the maximum allowed
frame length, send or receive.

Maximum Idle Time 16-bit unsigned integer in network byte
order containing the maximum idle time
in seconds. When this idle time is
exceeded a heartbeat message must
be sent.

Default Timeout 16-bit unsigned integer in network byte
order containing the default timeout in
seconds. This is the max time a client
should wait for acks or heartbeat
echoes, and the minimum time it
should wait between connect attempts.

Use Encryption A single ASCII character having the
value ‘Y’ or ‘N’.

Object Coding Technique A string of 3 ASCII characters having
the value “NON”, “HEX” or “B64”.

Newline Sequence A string of 4 ASCII characters having
the value of “LF “, “CR “ or “CRLF”.

FoxTalk™ Protocol Specification

Pg. 16 Company Confidential Ver. 1.0

Each field of the connect message is discussed in detail below.

5.1 Major Version Number

This field is a 16-bit unsigned integer in network byte order that contains the

major version number of the FoxTalk™ protocol in use. This field is meant to

allow the OpenFox™ message switch to simultaneously communicate with

multiple clients of varying version. As of this writing the only major version

number is 1.

5.2 Minor Version Number

This field is a 16-bit unsigned integer in network byte order that contains the

minor version number of the FoxTalk™ protocol in use. This field is meant to

allow the OpenFox™ message switch to simultaneously communicate with

multiple clients of varying version. As of this writing the only minor version

number is 1.

5.3 Maximum Frame Length

This field is a 32-bit unsigned integer in network byte order that contains the

maximum allowable frame length. This field should be set to the largest frame

that the client is willing to handle when the client sends its Connect Message to

OpenFox™. OpenFox™ will never return a value larger than what the client has

specified but may return a smaller number. The client must honor the number

returned by OpenFox™. Any frames that are received containing a length larger

than the negotiated maximum will be rejected by OpenFox™.

5.4 Maximum Idle Length

This field is a 16-bit unsigned integer in network byte order that contains the

maximum allowable idle time before a heartbeat message must be sent. The

client should leave this field set to 0 in it’s connect message and should use the

value returned by OpenFox™.

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 17.

5.5 Default Timeout

This field is a 16-bit unsigned integer in network byte order that contains the

default timeout for acks/naks and heartbeats. The client should leave this field set

to 0 in it’s connect message and should honor the value returned by OpenFox™.

This is the maximum amount of time that OpenFox™ or the client should wait for

a message acknowledgement (or nak) before retrying. It is also the maximum

length of time that the client should wait for a heartbeat to be echoed by

OpenFox™ before considering the link dead. It is also the minimum amount of

time a client should wait after a connection close before retrying the connection.

5.6 Use Encryption

This field is a single printable ASCII character having the value ‘Y’ or ‘N’. The

client should set this field to ‘Y’ if it wants to send and receive encrypted

messages, and ‘N’ if not. The OpenFox™ will return a ‘Y’ or ‘N’ to signify

whether or not encryption will be used. Please note that in some cases the

network layer is not encrypted and CJIS security policy dictates that all law

enforcement traffic over a public line must be encrypted. In these cases, even if a

client requests no encryption OpenFox™ may override the value with a ‘Y’. If

the client in this situation is unable to support encryption it must disconnect from

OpenFox™ and notify the user that encryption is required.

5.7 Object Coding Technique

This field is a string of three printable ASCII characters. The following table

shows the allowable strings and their respective meanings.

String Meaning

“NON” The client does not wish to send or receive binary objects in

messages. OpenFox™ will replace all binary objects with text on

outbound messages to the client.

“HEX” All binary objects will be present in printable hex format. This

includes both objects sent to and received from OpenFox™.

“B64” All binary objects will be present in B64 format. This includes both

images sent to and received from OpenFox™.

The client should set this field to the string that reflects the way it wants to handle

binary objects (such as images). OpenFox™ will always honor the choice of the

client in this field and will return the identical string when it returns the connect

message.

FoxTalk™ Protocol Specification

Pg. 18 Company Confidential Ver. 1.0

5.8 Newline Sequence

This field is a string of four printable ASCII characters that represent the way the

client wishes to send and receive newline sequences in text blocks. The following

table lists the possible values and their respective meanings.

String Meaning

“LF “ New lines are demarked by a single ASCII linefeed character
(hex value 0A).

“CR “ New lines are demarked by a single ASCII carriage return
character (hex value 0D).

“CRLF” New lines are demarked by an ASCII carriage return followed
by an ASCII linefeed (hex value 0D0A).

Please note that in the case of “CR “ and “LF “ the trailing white space is two

ASCII space characters (hex value 20). This string must always be four

characters long. The client should set its preferred method of recognizing

newlines in its connect message to OpenFox™. OpenFox™ will always honor

the client’s choice in this field and will return the identical string when it returns

the connect message to the client. All messages from the client to the

OpenFox™, and from OpenFox™ to the client, will and must use the negotiated

newline sequence. Any messages from the client that do not use a newline

sequence matching the negotiated method may result in errors from the

OpenFox™.

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 19.

6 Encryption

The FoxTalk™ protocol supports the use of the Advanced Encryption Standard (AES)

for the encryption of messages. AES uses the Rijndael encryption algorithm. Currently

FoxTalk™ supports running AES with 128-bit keys, 128-bit blocks, CBC (Cipher Block

Chaining) mode, and PKCS7 padding. Key management is handled through the key

negotiation phase when a client connects. After the connect message exchange a series

of Type K frames must be exchanged to encrypt the session. Once complete, all data

must be sent as Type E frames. The Type E frame has a structured payload. It is

constructed of the data to be transmitted, followed by a secure SHA-1 hash signature, and

then padded out to a modulus 128-bit length with the PKCS7 algorithm. A random

initialization vector is chosen and used to encrypt the above sequence of bytes with the

negotiated session key. The payload of the Type E frame is then the initialization vector

followed by the encryption output.

As discussed, using encryption in FoxTalk™ requires the use of the following

cryptographic components:

 Random Number Generation

 RSA encryption

 PKCS7 padding

 SHA-1 hash

 AES operation

The rest of this section will discuss these components in detail, followed by descriptions

of the Type K Frame exchanges required to negotiate a session key and the detailed

composition of the Type E Frames used for data transmission.

6.1 Cryptographic Components

This section will describe each of the cryptographic components used by

FoxTalk™. All cryptographic components used by FoxTalk™ are available for

free in the OpenSSL open source package. Please note, however, that in instances

where the underlying network is not encrypted itself to FIPS 140-2 standards,

then OpenSSL is inadequate and a FIPS 140-2 certified implementation must be

used.

FoxTalk™ Protocol Specification

Pg. 20 Company Confidential Ver. 1.0

6.1.1 Random Number Generation

There are several instances in FoxTalk™ where the generation of random

numbers is required. Many cryptographic libraries come with random

number generators which may be used for this purpose. If no random

number generator is available, it is possible to construct one using the

AES routine in CTR mode. This routine should be seeded strongly

(preferably with true random data). An input component of the CTR

mode is simply an incrementing counter. This feature in particular makes

this method well suited for choosing initialization vectors (and in fact is

recommended for IV generation by NIST).

6.1.2 RSA Encryption

The RSA algorithm is used by the client during the key negotiation phase.

The client will only have to use this algorithm to encrypt (never decrypt).

The algorithm must be invoked using the PKCS1 padding method. The

key to use is the FoxTalk™ server’s public key. The FoxTalk™ protocol

does not govern the distribution of the server’s public key. It must be

obtained directly from the administrators of the FoxTalk™ server to which

communication is desired. The public key is presented as a set of

components that are each a string representation of a big number. The

public key file contains simply the RSA ‘N’ (product) value and the

exponent value. These values should be used to create a new instance of

an RSA public key object.

6.1.3 PKCS7 Padding

Since AES is a block cipher every message must be padded out to a full

block length. FoxTalk™ uses 128-bit blocks, which are 16 bytes long.

The padding technique employed in PKCS7 uses the following rules:

Pad the last block to 16 bytes with characters that have a numeric value

equal to the number of padding characters required.

On messages where the last block is 16 characters exactly, add a block

with 16 characters each of value decimal 16 (hex 10) – which is the count

of padding characters added.

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 21.

This makes the recipient’s job very simple; just read the last byte of the

message, interpret it as a number, and remove that count of bytes from the

end of the message.

Examples:

Suppose the last block of a message contains 4 bytes. The block must be

padded with 12 characters, so 12 bytes of value decimal 12 (hex 0C) are

appended to the message.

Suppose the last block of a message contains 11 bytes. The block must be

padded with 5 characters, so 5 bytes of value decimal 5 (hex 05) are

appended to the message.

Suppose the last block of a message contains 16 bytes. An entire block

must be appended to the message, so 16 bytes of value decimal 16 (hex

10) are appended to the message.

6.1.4 SHA-1 Hash

The FoxTalk™ protocol requires the use of the SHA-1 hash in various

places. The FoxTalk™ protocol implements the hash through best coding

practice which consists of “hashing the hash” value which is

recommended to alleviate security risks. Whenever a hash is called for in

FoxTalk™, the data string should be run through an instance of the SHA-1

algorithm, resulting in a 160-bit (20 byte) output value. This 160-bit value

should itself be run through SHA-1, producing a final (but different) 160-

bit value, which is used as the FoxTalk™ hash. It is important that this

“double hash” be performed or the hash values produced by the server and

client will not match and the server will fail the connection.

FoxTalk™ Protocol Specification

Pg. 22 Company Confidential Ver. 1.0

6.1.5 AES Operation

As documented above FoxTalk™ uses AES in CBC (Cipher Block

Chaining) mode with 128-bit blocks and 128-bit keys. In the CBC mode

the current block of plain text is first run through a byte-at-a-time logical

XOR with the previous block of cipher text before being presented to the

encryption algorithm. Although many available encryption libraries will

perform this operation for the caller (if he specifies CBC mode) it’s

certainly possible to perform the CBC processing on one’s own. When

the CBC mode is used there is a special condition on the very first block

(since there is not a previous cipher text block). On the first block an

arbitrary block is used for the XOR operation. This block is termed the

Initialization Vector. A secure random number generator must be used to

create each Initialization Vector (abbreviated as IV).

6.2 Key Negotiation

This section will describe the steps required to negotiate a session key.

Immediately following the connect message exchange (and after negotiating that

encryption will be used) the server will begin the key negotiation. The are a total

of three Type K frames exchanged to negotiate the session key. The three frames

are called the K1, K2 and K3 messages. An overview of the procedure is given

below, followed by a detailed description of each of the three messages.

As stated above, the server will begin the key negotiation step by sending a K1

message to the client. The K1 message consists simply of a 128-bit (16 byte)

server nonce. The client records the server nonce and then uses his random

number generator to construct a 128-bit AES key and 128-bit client nonce. The

client then constructs a K2 message by concatenating the AES key, client nonce,

and server nonce together (in that order). The concatenated data is then hashed,

and the hash value appended. Then the FoxTalk™ server’s public RSA key is

used to encrypt the above data. The output cipher text is then sent as the message

payload of a Type K frame to the FoxTalk™ server, completing the K2 message.

The FoxTalk™ server will use it’s RSA private key to decrypt the K2 message,

verify that the proper server nonce is returned, and set the AES key as the session

key. Finally, the FoxTalk™ server builds a K3 message and returns it to the

client. The K3 message contains only the client nonce as data, but it is encrypted

with the same technique that all future Type E frames will use; the client nonce is

hashed (using the technique described in section 6.1.4 above), and the hash value

is appended to the nonce. This combined data is then run through a CBC AES

encryption operation with an initialization vector chosen at random. The final K3

message payload consists of the initialization vector followed by the AES

encrypted cipher text. The client should ensure that the client nonce value

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 23.

matches what it sent in the K2 message. If so then the key negotiation has

completed successfully. If not the connection should be immediately

disconnected.

The following table summarizes the K Frame exchange procedure:

Message Encryption Direction Content

K1 None From Server to Client Server Nonce

K2 RSA From Client to Server AES Key

Client Nonce

Server Nonce

K3 AES From Server to Client Client Nonce

The next sub sections provide a detailed description of each key negotiation

message.

6.2.1 K1 Message

The K1 message is very simple, and contains only the 128-bit (16 byte)

nonce value selected randomly by the server. This message is sent by the

server and received by the client and represents the beginning of the key

negotiation.

6.2.2 K2 Message

The K2 message contains an RSA public key encrypted message which is

made from the AES session key, client nonce and server nonce. After

receiving the K1 message, the client should use its random number

generator to produce a 128-bit (16 byte) AES key value and a 128-bit (16

byte) client nonce value. The AES key, client nonce, and server nonce

should be concatenated in this order. The hash technique described in

section 6.1.4 should then be used to produce a 160-bit (20 byte) hash value

out of the concatenated data. The K2 message should then be constructed

as the following table represents:

FoxTalk™ Protocol Specification

Pg. 24 Company Confidential Ver. 1.0

Field Length

AES Key 16 bytes

Client Nonce 16 bytes

Server Nonce 16 bytes

Hash Value (of the previous 3 data fields) 20 bytes

The client will now have a message that is 68 bytes long. These 68 bytes

should be sent encrypted by calling the RSA public encrypt function with

the FoxTalk™ server’s RSA public key and PKCS1 padding. The

resulting output (cipher text) is then sent to the server as a Type K frame,

concluding the K2 message. The FoxTalk™ server uses 2048 bit RSA,

which means that the resulting cipher text from the above operation will

be 2048 bits long, which is 256 bytes.

6.2.3 K3 Message

After receiving the K2 message the server will use it’s RSA private key to

decrypt the frame payload and recover the AES key, client nonce and

server nonce. If the server nonce does not match the value sent in the K1

message, the server will drop the connection. Otherwise, the server will

set the session key to the AES key received from the client and then

construct a K3 message. The K3 message is made out of the client nonce.

The nonce value is hashed (using the technique described in section 6.1.4).

The client nonce and hash value are concatenated together to form the

plain text of the K3 message. The message so far is 36 bytes long (16 byte

client nonce + 20 byte hash value) and is represented in the following

table:

Field Length

Client Nonce 16 bytes

Hash 20 bytes

Next, a random 128-bit (16 byte) IV (initialization vector) is chosen and

the 36 bytes of plain text are padded, using the PKCS7 technique, to the

next modulo 16 value (in this case 48) and then encrypted, resulting in 48

bytes of cipher text. The final frame payload is constructed of the IV plus

the cipher text (a total of 64), represented in the following table:

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 25.

Field Length

Initialization Vector 16 bytes

Encrypted Data 48 bytes

To decrypt this message, the client must remove the first 16 bytes and

store as the IV. Then, use the IV and the AES session key to decrypt the

48 bytes of cipher text and remove the PKCS7 padding. This will leave

36 bytes. The last 20 bytes are removed and stored as the server’s hash

value. The remaining 16 bytes should be hashed (using the technique

described in section 6.1.4) and the resulting value checked against that

sent by the server. If they match, then the client can compare these 16

bytes to the client nonce sent in the K2 message. If everything matches,

then the encryption negotiation is complete. If any error should occur the

connection should be closed. Please see Appendix A for examples of K

messages.

6.3 Type E Frame

As mentioned previously, once an encrypted session has been negotiated all data

must be transmitted as a Type E frame, never as a Type M. Type E frames are

constructed with the methodology employed to create the K3 message used

during key negotiation (substituting plain text for client nonce), reviewed below

in section 6.3.2. Like Type M frames, Type E frames are used for data, and may

need to transport data that is too large to fit in a single frame. In this case, the

same multi-framing technique used for Type M frames is used for the Type E

frames, with the last frame specifying the End-Of-Exchange is ‘Y’.

There is one additional concern in building Type E frames that is more complex

then Type M frames. Because of the overhead introduced by the encryption

techniques, it is more difficult to determine the maximum amount of plaintext that

may be used to construct a single Type E frame without the resultant payload size

overflowing the maximum negotiated frame length. Section 6.3.1 below explains

the necessary calculations.

FoxTalk™ Protocol Specification

Pg. 26 Company Confidential Ver. 1.0

6.3.1 Maximum Plain Text Lenth

To determine the maximum length of plain text that can be used to

construct a Type E frame, we must start with the maximum negotiated

frame length and work our way down. Let’s name the maximum

negotiated frame length MaxFL for short. First, we must remove the

framing overhead (12 bytes) and the length of the FoxTalk™ header (4

bytes), resulting in (MaxFL – 16). Now we must remove the length of the

Initialization Vector, which is 16 bytes, resulting in (MaxFL – 32). We

now must make sure that we have a modulo 16 value, which can be found

with integer math. Simply divide the number so far by 16 (which will

drop the remainder) and multiple by 16, making our formula so far

(((MaxFL – 32) / 16) * 16). From this we must subtract the length of the

hash value (20) and the length of at least 1 byte for padding (the PKCS7

standard will always add at least one byte - since we started with a modulo

16 value we are effectively forcing a 1 byte pad). This makes our

complete formula for the maximum plain text length to be:

(((MaxFL – 32) / 16) * 16) – 21

For example, if 8000 was the maximum frame length, the maximum plain

text that could be used works out to 7947. If our maximum frame length

is 5000, the formula yields 4939. Remember to drop the fraction when

dividing by 16. In other words, 5000 – 32 is 4968. 4968 / 16 is 310, not

310.5. This can be easily accomplished in software by using integer

division (instead of floating point).

6.3.2 Type E Payload

As mentioned above, the Type E frame uses a payload structure identical

to that used to compose the K3 message during key negotiation. First, the

calculation in section 6.3.1 above must be used to determine a suitable

length of plain text for the frame. Taking care to use a value equal to or

less than that given by the formula, the plain text is first hashed using the

technique in section 6.1.4. The 20 bytes of hash output are appended to

the plain text. This yields a structure depicted in the following table:

Field Length

Plain Text Variable

Protocol Specification FoxTalk™

Ver. 1.0 Company Confidential Pg. 27.

Hash 20 bytes

This data is then encrypted, requiring that PKCS7 padding be applied and

a random IV chosen, then the AES algorithm is invoked (in CBC mode

using the negotiated session key) to produce cipher text output. The

payload of the Type E frame is then constructed out of the IV followed by

the cipher text output:

Field Length

Initialization Vector 16 bytes

Cipher Text Variable (Modulo 16)

Please see Appendix A for examples of Type E frames.

FoxTalk™ Protocol Specification

Pg. 28 Company Confidential Ver. 1.0

* * * THIS PAGE LEFT INTENTIONALLY BLANK * * *

Protocol Specification FoxTalk™

Ver 1.0 Company Confidential Pg 29

Appendix A – FoxTalk™ Examples

This Appendix contains several complete examples of FoxTalk™ frame exchanges to be

used as a reference. The characters in the hex representations have background colors

according to the part of the frame they occupy as follows:

Red: FF00AA55 Frame Start or Stop Pattern

Magenta: 00000024 Frame Length Field

Yellow: 00014359 Frame Header Field

Blue: 4236344C Frame Payload

Example 1: Connect message exchange

In this example a client has just established a successful TCP session with

OpenFox™ and wishes to negotiate the following parameters:

FoxTalk™ Version 1.1

Max Frame Length 65,000

Use Encryption is No

Preferred Object Encoding is Base 64

Preferred new-line sequence is Linefeed only

Below is a hex representation of the ensuing frame:

FF00AA550000002400014359000100010000FDE8000000004E423634

4C46202055AA00FF

The frame start and stop patterns are present at the each end of the frame, and the

frame length is hex 24 bytes (which is decimal 36). As can be verified by counting

the bytes, this represents the total size of the frame from the first FF to the last FF.

The Frame Header (yellow) is deconstructed to:

Field Content Description

Exchange ID 0001 ID value was chosen arbitrarily by the client

Frame Type 43 ASCII ‘C’ for a Connect Message Type

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

The Frame Payload (blue) is a Connect Message which is deconstructed to:

Pg. 30 Company Confidential Ver. 1.0

Field Content Description

Major Version
Number

0001 Major version 1

Minor Version
Number

0001 Minor version 1

Maximum
Frame Length

0000FDE8 Hex FDE8 is decimal 65,000 which is the
maximum frame length the client can handle

Maximum Idle
Time

0000 Set to zero by client as per specification
(section 5.4)

Default
Timeout

0000 Set to zero by client as per specification
(section 5.5)

Use
Encryption

4E ASCII ‘N’ to signify no encryption

Object
Encoding
Technique

423634 ASCII string of value “B64” to signify Base 64
object encoding technique

Newline
Sequence

4C462020 ASCII string of four bytes value “LF “ to
signify use Linefeeds only for newlines.

After receiving this message the OpenFox™ switch will adjust the parameters and

return a Connect Message. For the purpose of example, let’s presume that

OpenFox™ in this case is configured for the following parameters:

FoxTalk™ Version 1.1

Maximum Frame Length 8,000

Use Encryption – yes or no accepted

Maximum Idle Time is 3 minutes (180 seconds)

Default Timeout is 30 seconds

In this case, OpenFox™ must lower the maximum frame length requested by the

client to 8,000 bytes. OpenFox™ will also present the two time fields (Max Idle

Time and Default Timeout) and will honor the remaining values requested by the

client. Please note that if the OpenFox™ had a maximum frame size of 120,000, that

OpenFox™ would have respected the 65,000 byte maximum requested by the client.

Below is a hexadecimal representation of the ensuing response frame:

FF00AA5500000024000143590001000100001F4000B4001E4E423634

4C46202055AA00FF

Again, this frame contains the start and stop pattern and has a length of hex 24

(decimal 36). Below is a breakdown of the Frame Header:

Protocol Specification FoxTalk™

Ver 1.0 Company Confidential Pg 31

Field Content Description

Exchange ID 0001 ID value chosen by the client is returned by
OpenFox™™

Frame Type 43 ASCII ‘C’ for a Connect Message

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

The breakdown of the Connect Message in the Frame Payload is:

Field Content Description

Major Version
Number

0001 Major version 1

Minor Version
Number

0001 Minor version 1

Maximum
Frame Length

00001F40 Hex 1F40 is decimal 8,000 which is the
maximum frame length the OpenFox™ can
handle. Since this was smaller that the
client’s value it was overridden by OpenFox™

Maximum Idle
Time

00B4 Hex B4 is decimal 180 specifying a maximum
idle time of 3 minutes

Default
Timeout

001E Hex 1E is decimal 30 specifying a default
timeout of 30 seconds.

Use
Encryption

4E ASCII ‘N’ to signify no encryption

Object
Encoding
Technique

423634 ASCII string of value “B64” to signify Base 64
object encoding technique as requested by
the client

Newline
Sequence

4C462020 ASCII string of four bytes value “LF “ to
signify use Linefeeds only for newlines as
requested by the client

After this frame is sent by OpenFox™ there is now an open FoxTalk™ session

between the client and the OpenFox™. The final negotiated session parameters are:

FoxTalk™ Version 1.1

Maximum Frame Length 8,000

Maximum Idle time 3 minutes

Default Timeout 30 seconds

No encryption will be used

Objects will be encoded with the Base 64 method

All text newlines will be represented by Linefeed characters only

Pg. 32 Company Confidential Ver. 1.0

Example 2: Heartbeat exchange

This example will cover a case where a client’s connection to OpenFox™ has been

idle for the maximum allowed idle time (as negotiated with the Connect Message

exchange). The client must now construct a FoxTalk™ Heartbeat Frame and deliver

it to OpenFox™. Below is a hexadecimal representation of the heartbeat frame:

FF00AA55000000101B04485955AA00FF

This frame has the start and stop patterns at the beginning and ending of the frame,

and has the frame length field set to hex 10 (decimal 16) which is the length of the

entire frame.

Since this frame is a Heartbeat type it does not contain a payload. Also, since it is not

a Data Message type it will never include the encryption fields of the FoxTalk™

header (even if encryption had been negotiated to ‘Y’ on this session). Below is a

deconstruction of the FoxTalk™ Header:

Field Content Description

Exchange ID 1B04 ID value chosen arbitrarily by the client

Frame Type 48 ASCII ‘H’ for a Heartbeat Exchange

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

When OpenFox™ receives this frame it will reset the connection’s idle timer and

echo the heartbeat back with the following frame (again in hexadecimal

representation):

FF00AA55000000101B04485955AA00FF

This frame is identical to the frame received from the client. It is of length hex 10

(decimal 16) and contains no payload or encryption fields. Below is the breakdown

for the FoxTalk™ header:

Field Content Description

Exchange ID 1B04 ID value chosen by the client is returned by
OpenFox™

Frame Type 48 ASCII ‘H’ for a Heartbeat Exchange

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

Protocol Specification FoxTalk™

Ver 1.0 Company Confidential Pg 33

Example 3: Non-encrypted single frame data message

In this example the client sends a simple QV transaction to OpenFox™ on a session

which has negotiated no encryption. OpenFox™ will respond with an

acknowledgement. The purpose is to demonstrate single framing and non-encrypted

data message exchange.

For this example, the message from the client will be an OFML QV transaction as

follows:

<OFML>

 <HDR>

 <ID>12345ABCDE</ID>

 <DAC>SP01</DAC>

 <REF>123123123</REF>

 <MKE>QV</MKE>

 <ORI>INXML0000</ORI>

 <SUM>"QV:EXAMPLE LIC/ABC123"</SUM>

 </HDR>

 <TRN>

 <LIC>ABC123</LIC>

 <LIS>IN</LIS>

 </TRN>

</OFML>

Below is a hexadecimal representation of the ensuing FoxTalk™ frame sent by the

client:

FF00AA55000000CA02174D593C4F464D4C3E3C4844523E3C49443E31

3233343541424344453C2F49443E3C4441433E535030313C2F444143

3E3C5245463E3132333132333132333C2F5245463E3C4D4B453E5156

3C2F4D4B453E3C4F52493E494E584D4C303030303C2F4F52493E3C53

554D3E2251563A4558414D504C45204C49432F414243313233223C2F

53554D3E3C2F4844523E3C54524E3E3C4C49433E4142433132333C2F

4C49433E3C4C49533E494E3C2F4C49533E3C2F54524E3E3C2F4F464D

4C3E55AA00FF

The frame starts and stops with the appropriate patterns and has a length field of hex

CA (decimal 202) which is the entire length of the frame. Below is a deconstruction

of the FoxTalk™ Header:

Field Content Description

Pg. 34 Company Confidential Ver. 1.0

Exchange ID 0217 ID value chosen arbitrarily by the client

Frame Type 4D ASCII ‘M’ for a Data Message frame

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

The Frame Payload contains the data of the message (in this case, a series of ASCII

characters representing the OFML message text).

After receiving this frame, OpenFox™ will accept the message at the protocol level

(i.e. before the payload content is parsed) with the following FoxTalk™ frame:

FF00AA55000000100217415955AA00FF

As always the frame starts and stops with the appropriate patterns. The frame length

is hex 10 (decimal 16) which represents the overall length of the frame. The header

breakdown is:

Field Content Description

Exchange ID 0217 ID value chosen by the client is returned by
OpenFox™

Frame Type 41 ASCII ‘A’ for an Acknowledgement frame

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

After receiving this frame the client knows the OpenFox™ has safely received the

QV transaction.

Example 4: Negative acknowledgement

This example contains a hypothetical NAK message for the purpose of illustrating

what a NAK would look like.

For the purposes of example, suppose OpenFox™ received a frame from the client

that was an invalid K2 message. Also, suppose the frame had an Exchange ID value

of 4057. The NAK message from OpenFox™ would look like:

FF00AA550000002240574E59496E76616C6964204B32204D65737361

676555AA00FF

As always this frame begins with the start pattern and ends with the stop pattern. The

frame length is hex 22 (decimal 34) which is the length of the entire frame. Below is

a breakdown of the FoxTalk™ header:

Field Content Description

Protocol Specification FoxTalk™

Ver 1.0 Company Confidential Pg 35

Exchange ID 4057 ID value chosen by the client is returned by
OpenFox™

Frame Type 4E ASCII ‘N’ for a Negative Acknowledgement

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

The Frame Payload contains an ASCII data string of value “Invalid K2 Message”.

This is a textual explanation of the reason for the NAK.

Example 5: Key Negotiation

This example shows the exchange of the three K Frames to complete a key

negotiation on a session for which encryption has been negotiated.

Immediately after the connection message exchange has been completed, the

FoxTalk™ server sends the K1 message. Our example K1 message is:

FF00AA550000002000014B59E168F4DCFCC89F4861B91F973816CAE5

55AA00FF

The frame length here is hex 20, decimal 32. This is 12 bytes of framing, 4 bytes of

FoxTalk™ header, and 16 bytes of server nonce. The breakdown of the header is

Field Content Description

Exchange ID 0001 ID value chosen by OpenFox™

Frame Type 4B ASCII ‘K’ for a Key Frame

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

The Client response to this frame follows:

FF00AA550000011012344B5907DBA5E832E070809605125C65E68F12

03A5165C5B1EC3C71EF61082A44A339DF47A86024AC4AC71B5DE6318

24A827C7A459886D30AFAA3CA8CEA3ADDC3A430E5EF59FCA34BB048A

A0990074DD4459F8DAA98BC7E03ACC92E57C39E202070560F35BA13C

3B59E7A5BB9A0EB10262E84A4DA87A78A35146CFF3485969FA701023

9B369E225958507692782A473D9A7CB033DD493CC7A6E24E6A97D6C1

D636F7D9295A7A8ABAF653F1D5A0593A911B50A3B7C734083B54D931

1DAE13CD1D4E44B70911323781BF9FBB6A14016ED1E1F4A05453EDC3

69A122E9888AE2AA3A086CE3E2E676ED84D6795F2D12518101448C23

A240515B9141B6B7168D7C6D2035106455AA00FF

Again – the framing is applied, and the overall length of this frame is hex 110,

decimal 272. The OpenFox™ is using 2048-bit RSA. Subtracting the overhead of 16

bytes from 272 leaves 256 bytes, which is exactly 2048-bits. Thus we can see that the

Pg. 36 Company Confidential Ver. 1.0

payload of this frame is the RSA encrypted output of the K2 message body,

documented in section 6.2.2. Finally, the OpenFox™ responds with the K3 message:

FF00AA550000005012344B59E672179902BBE5BEAF424EF634F92186

3D8513B429AC63D88F2157EDA3296559D19E6097AFBA57BF1C94F563

B645324E54168E8ABBBCAFED62931B408A1988A555AA00FF

As expected, the length of this frame is hex 50, decimal 80. The length of 80 minus

16 bytes of overhead leaves 64 bytes, which is the correct length for a K3 message

payload, as documented in section 6.2.3.

Example 6: Encrypted Message

This example shows an encrypted message from the client to OpenFox™. The client

sends the following message on a session for which encryption has been negotiated

and a session key determined:

FF00AA550000006004D245599783822860ED6106B4C9980A93B6B2DC

63258C87932EFAC2822B2C4A1016CD17ABA75819A71EC0154B057A91

1EE4DF13760C16ECD52A81B379F0EF8EEAD29E13B6DE99CBE95B3DC4

6D3B7D0BBBC8002C55AA00FF

The length of this frame is hex 60, decimal 96. Taking off the 16 bytes of overhead

(12 framing, 4 header) leaves 80 bytes of payload. The first 16 of these is the IV.

After removing them we are left with 64 bytes of cipher text. Please note that this

value is modulo 16. The FoxTalk™ Header breakdown is:

Field Content Description

Exchange ID 04D2 ID value chosen by the client

Frame Type 45 ASCII ‘E’ for a Encrypted frame

End of Exchange
Indicator

59 ASCII ‘Y’ to signify end of message

Upon receiving this, OpenFox™ would issue the following Ack:

FF00AA550000001004D2415955AA00FF

Please note that the ID value is returned intact.

